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a b s t r a c t

A perturbation method for computing quick estimates of the echo decay in pulsed spin echo gradient
NMR diffusion experiments in the short gradient pulse limit is presented. The perturbation basis involves
(relatively few) dipole distributions on the boundaries generating a small perturbation matrix in O(s2)
time, where s denotes the number of boundary elements. Several approximate eigenvalues and eigen-
functions to the diffusion operator are retrieved. The method is applied to 1D and 2D systems with Neu-
mann boundary conditions.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

NMR-methods provide an arsenal of tools to study restricted dif-
fusion [1–3] where not only mass transportal properties such as flow
and diffusion can be studied [4–7] but also characteristics of the
material [8–11]. Commonly used for diffusion studies is the pulsed
gradient spin-echo (PGSE) NMR technique where the particle posi-
tions are labeled by a magnetic field gradient [12]. Position labeling
is commonly performed by finite-length magnetic field gradient
pulses and the theory for this experiment is described by the
Bloch–Torrey equations [13]. In the short gradient pulse (SGP) limit
however, the spin-echo decay simplifies to a Fourier transform over
the propagator [3]. The SGP-limit is therefore commonly used to de-
scribe the diffusion process when the geometric length scales of the
material are longer than the effective gradient length scales as given
in the q-vector approach [14–17]. In heterogeneous materials the
spin-echo decay normally results in a function that can be described
by a sum of exponentially decaying functions, resulting in a rather
featureless form. However, in structurally well-defined materials,
such as packed mono-disperse micrometer sized beads, it can dis-
play detailed features from which material structure details can be
obtained [18–20,11,14,21]. In addition, in the SGP-limit, the initial
slope of the spin-echo decay always conveys information of the
mean square displacement independent on material homogeneity/
ll rights reserved.
heterogeneity. It is thus of interest to calculate a spin-echo decay
from homogeneous and heterogeneous materials, in order to gain
knowledge about the dependence between material structure and
diffusion. The naive approach to calculate the echo decay in the
SGP-limit is done by diagonalizing the diffusion operator. In this pa-
per we develop a perturbation technique to calculate rough, but
quick estimates of the echo decay, based on approximate eigenfunc-
tions of the diffusion operator. These approximate eigenfunctions
separates free diffusion and the influence of the material. Interesting
features of the material can thus be analyzed in detail, also for large
scale systems.

2. Theory

In the short gradient pulse limit the echo decay is described by
the so called master equation, a Fourier transform over the propa-
gator [6,12,22]

Eðq; tÞ ¼ 1
V
hqjPðr; r0; tÞjqi: ð1Þ

The volume term 1
V arise from the assumption that the initial posi-

tions of the particles are equally distributed among the volume of
the sample and hqj = ei2pqz, where q is a real and the applied gradient
is in the z-direction. The propagator in Eq. 1 denotes the ordinary
diffusion propagator [22], which can be expanded in eigenfunc-
tion/eigenvalue pairs [23,22] as
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Fig. 1. The figure shows a conceptual representation of a boundary X (thin solid
line) and an eigenfunction to S (thick solid line), which consists of two delta-
functions with different sign over the boundary, as a dipole pointing in the direction
of the normal to the boundary (dotted line). The grey shaded area show an example
of a Fourier mode which span the exterior side of the boundary and thus sets the
amplitude of the exterior delta-functions. Due to the dipole nature of the
eigenfunctions to S, a Fourier mode of opposite sign span the interior side of the
boundary (not shown in the figure) and the two Fourier modes together makes an
example of a surface distribution rS (c.f Eq. 7).

1 This restriction also connects naturally with the experimental NMR setup, where
the range of q-vectors is not complete but restricted by the gradient strength
available.
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P ¼
X1
i¼0

jiihije�tki :

The eigenequation for the eigenfunction/eigenvalue pairs is written
as

Ljii ¼ kijii; ð2Þ

where L denotes the effective diffusion operator associated with the
boundary conditions (which will be defined in detail below). Note
that the master equation (Eq. 1) can be written as

Eðq; tÞ ¼ 1
V

X1
i¼0

e�tki jhqjiij2 ð3Þ

i.e. the echo decay is defined by the overlap between incoming
(Fourier) modes hqj and the eigenfunctions jii of the diffusion oper-
ator L, weighted by the time-dependent term e�tki . In general, Eq. 3
must be solved using numerical methods, since the eigenfunctions
of the diffusion operator are known only for simple geometries. In
the case of free diffusion using periodic boundary conditions on
the computational cell, the diffusion operator reduces to the Laplace
operator D. We note that in this situation, the eigenfunctions to the
Laplace operator and the incoming modes hqj in Eq. 3 coincide,
when q is integer valued [24]. From now on we will restrict our-
selves to the set of integer valued q and we denote the associated
eigenvalues to the free diffusion problem by kq.

We write the diffusion operator as

L ¼ D� S ð4Þ

where S denotes an operator defining the boundary conditions. We
will refer to S as the surface operator and view its presence as a per-
turbation on the free diffusion problem Djqi = kqjqi. The problem
here is that, viewed as a perturbation on the Laplace operator, the
norm of S is not small and standard perturbation techniques are
not applicable. Now we will show that one can still use a perturba-
tive approach, by using a ‘‘mixed basis’’ which captures the relevant
information from the Laplace operator: describing free diffusion,
and the surface operator: describing the boundaries.

Since the unperturbed problem (S = 0) reduces to Laplace equa-
tion it is evident that part of the perturbation basis need to consist
of a set of integer valued jqi, for a correct solution in absence of S.
By recalling the form of Eq. 3 we are motivated to find some set of
functions orthogonal to jqi describing the influence of the surface
operator S. The eigenfunctions of the diffusion operator would then
be approximated by linear combinations of jqi and these unknown
vectors. Due to this orthogonality condition, the calculation of the
echo decay in Eq. 3, would then reduce to a calculation of the con-
tribution of the current jqi to the linear combination spanning the
eigenfunctions and the associated eigenvalues in the following
manner:

Eðq; tÞ � 1
V

e�tk0 hqj
X

q

aqjqi þ � � �
 !

¼ 1
V

e�tk0 jaqj2: ð5Þ

The weights aq are influenced by the surface operator S and the dots
denote the terms comprising of the unknown surface vectors. k0 de-
notes the approximate eigenvalues of L formed by the inner product
of the approximate eigenfunctions and the diffusion operator (to be
defined below). We will now expand on this idea and show how to
construct these ‘‘unknown’’ surface vectors.

We construct S by assuming Neumann conditions at the bound-
ary X

n̂ � r/ðx 2 X; tÞ ¼ 0; ð6Þ

for the (unknown) solution /(r, t). The operator S equals n̂ � r, and
acts as a directional derivative on X. Each eigenfunction of S consist
of two d(r �x)-functions with sign change over X and it is clear
that standard perturbation techniques will not work, as the norm
of S is large in the Laplace basis. By the form of the eigenfunctions
to S we will refer to them as dipoles. Now we Fourier expand the
eigenspace of S, with sign change over X to preserve the dipole form
and denote such surface Fourier modes by rs (see Fig. 1 for a con-
ceptual representation). If the surface is smooth, a Fourier expan-
sion on the boundary captures incoming waves hqj of about the
same wave numbers. This means that for a truncated set of Fourier
modes fhq j gN

q¼1 in the low q-regime, a set of low wave-number sur-
face modes suffices. We denote the number of such surface modes
by M. The corresponding surface functions jsi are then calculated by
solving Poisson’s equation

jsi ¼
Z

X

1
jr �xjrsðxÞdx ð7Þ

where in two dimensions the kernel is replaced by logjr �xj. The
approximate solutions to the diffusion problem (cf. Eq. 2) ji0i can
then be written as linear combinations of eigenfunctions to the La-
place operator jqi and solutions jsi to Poisson’s equation (Eq. 7)

jii � ji0i ¼
XN

q

aqjqi þ
XM

s

bsjsi ð8Þ

and the approximate eigenvalues can be formed by
k0 = hi0j(D � S)ji0i. This linear combination does not bear sense if
N ?1, as of course fj qig1q¼0 already form complete set. If we how-
ever restrict ourselves to a subset of eigenfunctions of D, N <1, the
complementary basis spanned by jsi is interesting and proposes a
perturbation technique 1. The outline of the mixed basis approach
can also be found in Ref. [25].

Although the surface distributions rs(x) are chosen to be
orthogonal, the corresponding jsiwill not be, but more importantly
they nor will be orthogonal to jqi. Hence, before the perturbation
matrix is formed, an orthogonalization procedure of the surface
modes jsi is needed

jsi ! js?i ð9Þ

The resulting vectors js\i are orthogonal to each other and also to the
subset of free harmonic functions fj qigN

q¼1. The orthogonalization
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Fig. 2. The figure shows echo decays for diffusion between two plates, separated by
distance a. The real echo decay is calculated using Eq. 3 with the full spectrum of
the diffusion operator L for time t = 100 (�). The approximate echo decay for the
corresponding time is calculated using N = 10 eigenfunctions to the Laplace
operator D and M = 1 surface function (solid line). Also shown is the infinite time
solution E(q,1) = jsinc(pql)j2 (j) and the approximate infinite time solution
(dashed line) using the same perturbation basis as for the t = 100 signal. The
approximate signals coincide well with expected results (the relative error is of
order 10�4).
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Fig. 4. The figure shows echo decays for the 2D-example of randomly distributed
discs (see Fig. 3). The real echo decay (calculated using Eq. 3) is shown for times
t = 200 (.), t = 900 (j) and t = 2000 (N). The approximate echo decay is calculated
using N = 150 eigenfunctions to the Laplace operator D and M = 280 surface
functions and is shown for t = 200 (dashed line), t = 900 (dotted line) and t = 2000
(filled line). The box side length is l = 200. The relative error of the approximate
echo decays is of order �10�3. Note that the approximative echos are calculated
only at the corresponding q-values but lines are drawn between these, for
visualization.

Fig. 3. The figure shows a 2D-system consisting of randomly distributed discs of
equal radius. The system consist of 4 � 104 grid points and Neumann boundary
conditions separates the void space (white region) from structure (grey region).
Fig. 4 shows the real and approximate echo decay for different times.
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procedure (e.g Gram–Schmidth) can be performed on the surface
only by the following observations. Firstly, the scalar product be-
tween a harmonic function and a surface function jsi can be per-
formed as a surface calculation

hqjsi ¼ 1
kq
hqjrsi

since D is self-adjoint. Furthermore, the scalar product between two
solutions to Poisson equation can be treated as follows:

hsjs0i ¼
Z

V

Z
X

rsðxÞ
jr �xj dx

Z
X

rs0 ðx0Þ
jr �x0j dx

0 dr

¼
Z

X
rsðxÞrs0 ðx0ÞHðx;x0Þdxdx0 ð10Þ

where the resulting integrals x and x0 are over the surface only.
The interchange of the integration variables is valid provided that
the unit cell is neutral [26] and the resulting function H(x, x0)
can be pre-calculated! Importantly the function H only depends
on the unit cell size and number of dimensions and thus needs only
to be calculated once and used as a look-up table. Furthermore, by
noting that both

ðD� SÞjs?i

and

ðD� SÞjqi

only need to be calculated over the surface, the resulting perturba-
tion matrix is quickly accessible and is of size (N + M) � (N + M). The
perturbation matrix has the following form:

Ai;j ¼ hijðD� SÞjji

where i and j range over all perturbation vectors, i.e. fhq j gN
q¼1 and

fhs? j gM
s¼1. The scalars aq in Eq. 5 as well as the approximate eigen-

values can be retrieved by diagonalization of the small perturbation
matrix A. We denote the eigenfunctions of the perturbation matrix
by jki. It may be noted that when t ?1 the echo decay reduces to
the first column of the perturbation matrix.

3. Notes on implementation

In this section we summarize the mixed basis method and sug-
gest practical steps of implementation. The method can be summa-
rized in the following manner:

1. Formation of S and the surface Fourier modes.
2. Solution of Poisson equation for the surface modes.
3. Orthogonalization of the surface modes.
4. Formation and diagonalization of the perturbation matrix A.
5. Formation of the echo decay from eigenvalues to A and weights

aq.

In the first step S and the Fourier modes spanning the bound-
aries are formed, using the coordinates of the boundary elements.
In two dimensions it is straight forward to parameterize Fourier
modes spanning the boundaries. Due to the form of the eigenvec-
tors to S, an inner and outer Fourier mode is formed, with sign
change over the boundary. Importantly in this step, the computa-
tional cell must be charge neutral

R
rsðrÞdr ¼ 0. In this paper the
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Fig. 5. Echo decays for the model shown in top left image for times t = 200 (top right), t = 900 (bottom left) and t = 2000 (bottom right). The real echo decay E(q, t) is calculated
using Eq. 3 (�) and the approximative echo decay is calculated using M = 100 surface functions and the first N = 100 eigenfunctions of D (solid line). Note that the
approximative echo is calculated only at the corresponding q-values but the solid line is drawn between these, for visualization. l = 200 denotes the box side length. The
relative error of the approximative echo decay is of order �10�2.
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surface Fourier modes was formed by first: calculation of the first
(smallest eigenvalues) eigenvectors to a Laplace operator defined
on the (outer) boundaries and secondly: forming the Fourier mode
spanning the inner boundary directly by using the values at the
outer boundaries. Since the surface Laplace operator is sparse
and symmetric the diagonalization can be made using standard
Lanczos techniques where each iteration is performed in linear
complexity with respect to the number of boundary elements
O(s). The reason that this approach was used is that it is general
and works for any number of dimensions. In the second step the
Poisson equation is solved for each surface mode, generating the
surface modes jsi. The Poisson equation can be solved in linear
complexity O(s) using Fast Multi Pole (FMM) techniques [27] due
to the fact that the solution is only needed at the surface elements.
In the third step the surface modes fj sigM

s¼1 are orthogonalized
with respect to each other, and also to the set of free modes
fj qigN

q¼1. Using the H-operator and the properties of the functions
used (described in the section theory) this can be performed on the
surface only in O(s2) complexity. The reason for the square term is
the double integral in Eq. 10. It is possible that this can be en-
hanced further to linear O(s) complexity using combined Ewald
summation techniques and FMM methods [28]. In the fourth step
the perturbation matrix A is formed using Eq. 2. It is fully popu-
lated, but of size (N + M) � (N + M) and hence the complexity for
diagonalizing A can be disregarded. The eigenvalues to A are
approximations of the eigenvalues to the original operator L and
the associated eigenvectors of A give the weights to the linear com-
binations of the basis functions approximating the eigenvectors to
L according to Eq. 8. In the fifth step the weights of the jqi-func-
tions retrieved from the eigenvectors to A are used together with
the approximate eigenvalues to form the echo decay using Eq. 5.
4. Results

The perturbation basis has been validated in several trivial and
non-trivial domains with good results. Three examples are pre-
sented here and in all examples the free space diffusion constant
is set to unity.

The first example consists of diffusion between two plates sep-
arated by a distance a, a well studied situation for which an ana-
lytic expression is known [29,15,30]. A standard finite difference
approach is used with a grid spacing h = a/50. The perturbation ba-
sis consist of N = 10 eigenfunctions to the Laplace operator D, and
one dipole function representing the boundary (M = 1). The echo
decay is shown in Fig. 2 for t = 100 and t =1 together with the real
SGP-signal calculated from the eigenfunction expansion of L and
the analytical infinite time solution E(q,t ?1) = jsinc(pql)j2 [2].
The relative error of the approximate echo decay is of order
�10�4 for this perturbation basis and relative error of the apparent
diffusion constant, estimated from the initial slope of the echo de-
cay [31], is also of order �10�4.

The following two examples consist of two-dimensional sys-
tems using 4 � 104 grid points. Periodic boundary conditions are



278 M. Nordin et al. / Journal of Magnetic Resonance 212 (2011) 274–279
used on the computational cell, which has a side length l = 200.
Neumann boundary conditions separate the void space (white re-
gions) and the structure (grey regions) and the echo decays are cal-
culated in the void space. The dipole distributions for the
boundaries are calculated by diagonalizing the finite difference
approximation on the boundary yielding Fourier modes spanning
the surface and sign change over the domain preserve the dipole
form. The first such example consist of randomly distributed discs
with equal radius (see Fig. 3). Fig. 4 shows the real and approxi-
mate echo decays for times t = 200,900,2000. The real echo decay
is calculated with Eq. 3 using the 280 first eigenfunctions/eigen-
values to L, which gives an error <10�9 for t > 200. The approximate
echo decay is calculated using the first N = 150 eigenfunctions to D
and 20 surface Fourier modes per disc are used, in total M = 280
surface functions represent the boundaries. The relative error of
the echo decay is of order �10�3.

The last example consists of diffusion in a more interesting
2-dimensional model. The model is generated by a parent/child
process [32], where parents are created randomly using a uniform
distribution and children are distributed around each parent using
a Gaussian distribution. The pixel positions of the children then
represent the material. The number of parents/children and the
distribution parameters can be varied and the space of geometries
is rich. Although such geometries work well in discrete case, they
can of course not be spanned by Fourier modes in the continuous
limit. Fig. 5 shows an example of one such geometry and echo
decays calculated for times t = 200,900,2000. The perturbation
matrix is calculated using the N = 100 first eigenfunctions to D
and M = 100 surface vectors. In the calculation of the real echo
decay the first 230 eigenfunctions corresponding to the void space
are used, which gives an error of order <10�9 for t > 200. The
relative error of the approximative echo decay is of order 10�2.
5. Conclusions

We have shown that for diffusion problems with Neumann
boundary conditions the echo decay in the SGP-limit can be calcu-
lated via a perturbation method with a mixed basis. Approximate
echo decays are presented together with analytic and real echo de-
cays (calculated from the eigenfunction expansion of the diffusion
operator) for trivial and non-trivial geometries and the relative er-
ror of the echo decay is small. The mixed basis consist of (analyti-
cally known) eigenfunctions to the Laplace operator and solutions
to Poisson’s equation with dipole distributions on the boundary.
Relatively few base vectors are needed for good result, resulting
in a quickly accessible perturbation matrix. The method is formu-
lated on the boundary, apart from a volume dependent function,
which however is geometry independent and can be pre-calculated
using standard Ewald summation techniques, saved to disk, and
used as a lookup table for arbitrary geometries. This reduces the
calculations of approximate propagators and echo decays in
the SGP-limit to a computational complexity of O(s2), where s is
the number of surface elements. As one may view the scalar prod-
uct between the surface modes as a potential interaction between
the charges, where the H-function denotes the potential, the
method could perhaps even be reduced to a linear time complexity
O(s) by combining Ewald summation techniques and Fast Multi
Pole methods. This is currently a work in progress.

As the approximate eigenfunctions not fully compensate for the
Neumann conditions on the boundaries a resonance effect has
been observed when using harmonic functions in the perturbation
basis with wave-lengths corresponding to the structure domains
(grey regions), this increases the error of the echo decay at q-values
corresponding to such wave lengths. At such wave lengths the
approximate eigenfunctions consist of linear combinations of
eigenfunctions corresponding to the outer (white region) and inner
(grey regions) domains. This effect can be minimized by increasing
the number of surface modes M, preserving the orthogonality to
the inner domains and or not introduce harmonic functions
at the resonance points. Note that the error due to this resonance
effect is of the same order as the error at other q-values in the
geometries presented, but more pronounced.

The method share similarities with other methods formulated
on the boundary such as the boundary element methods [33]
(BEM), analytic element methods [34] (AEM) and boundary
approximation methods [35,36] (BAE), also known as Trefftz meth-
ods, but might be an alternative due to the small size of the result-
ing perturbation matrix achieved in O(s2) time where s is the
number of boundary elements. The approximate signals can also
be improved by using the approximative eigenfunctions/eigen-
values as an initiator for other iterative method as for example
[37] which relies on an initial guess of the eigenvalues. As the stan-
dard methods for calculations of the diffusion propagator are
impractical for large-scale systems, due to the heavy computa-
tional demand, the mixed basis approach is suggested as a realistic
tool for calculating approximative echo decays.

On a final note the mixed basis approach can perhaps also be
extended from the SGP-limit to cover time-dependent gradients
using the matrix formulation developed by Callaghan [38] based
on a multiple propagator approach [39].
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